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Single Reference Frequency Loss for
Multifrequency Wavefield Representation
Using Physics-Informed Neural Networks

Xinquan Huang and Tariq Alkhalifah

Abstract— Physics-informed neural networks (PINNs) can
offer approximate multidimensional functional solutions to the
Helmholtz equation that is flexible, requires low memory, and
has no limitations on the shape of the solution space. However,
the neural network (NN) training can be costly, and the cost
dramatically increases as we train for multifrequency wavefields
by adding frequency as an additional input to the NN multi-
dimensional function. In this case, the often large variation of
the wavefield features (specifically wavelength) with frequency
adds more complexity to the NN training. Thus, we propose a
new loss function for the NN multidimensional input training
that allows us to seamlessly include frequency as a dimension.
We specifically utilize the linear relation between frequency and
wavenumber (the wavefield space representation) to incorporate
a reference frequency scaling to the loss function. As a result, the
effective wavenumber of the wavefield solution as a function of
frequency remains almost stationary, which reduces the learning
burden on the NN function. We demonstrate the effectiveness of
this modified loss function on a layered model.

Index Terms— Multifrequency wavefield, partial differential
equation, physics-informed neural network (NN) (PINN), single
reference frequency loss.

I. INTRODUCTION

FREQUENCY-DOMAIN wave equation modeling, based
on the Helmholtz equation, is quite common and of

great importance in modeling many physical phenomena,
e.g., electromagnetic and seismic wave propagation. However,
in inverting for the subsurface properties, we have to solve
the Helmholtz equation for many frequencies to recover fine-
scale details, such as those in ultrasound medical imaging,
ground-penetrating radar, and seismic full waveform inversion.
Consequently, an accurate and efficient multifrequency solu-
tion is extremely important in many scientific and industrial
applications. However, when the size of the subsurface model
is large and the frequency is high, the computational cost
of classical methods, such as finite difference, finite element,
and spectral methods, is high. Besides, the complexity of the
wave equation in elastic or anisotropic media can consider-
ably add to the computational burden. The recently devel-
oped physics-informed neural network (PINN) for solving the
Helmholtz equation showed considerable potential in modeling
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because of its flexibility and low memory requirement, and no
limitations are imposed on the shape of the solution space [1].
However, it is hard to train, admitting less than optimal
solutions for practical size neural network (NN) models [2].
A major challenge is that, when we increase the dimension
of the input (such as including frequency), the complexity of
the wavefield increases, yielding poor convergence of PINN.
Reducing the complexity of the PINN optimization problem
is an important objective.

Here, we propose to use a reference frequency modified
Helmholtz equation-based loss function to train an NN for
multifrequency wavefield representation using PINN. The ref-
erence frequency allows us to effectively mitigate the change
in the spatial wavenumber over frequency by adapting the
spatial scale to frequency, thus reducing the complexity of
the wavefield as if it was representing a single frequency.
This is important, as the PINN convergence depends highly
on the complexity of the wavefield. We apply our method
using the frequency-domain scattered wave equation to predict
multifrequency wavefields. Compared to the traditional PINN
with multifrequency loss, our approach yields more accurate
and efficient wavefield solutions.

II. RELATED WORK

PINN plays a vital role in surrogate modeling with potential
applications in many fields [3]–[7]. For wavefields, when
the solution domain is large or the frequency is high, the
complexity of the solution requires a large-size NN, which
is hard to train [8], [9]. To address the limitations of PINN,
e.g., convergence, especially its convergence in scenarios with
a large solution domain and high frequency, Wang et al. [10]
made use of the Fourier input feature to solve the opti-
mization using trigonometric functions. Liu et al. [11] pro-
posed multiscale deep NNs with a PINN loss to improve
the convergence. Recently, domain decomposition has gained
attention [2], [12], [13] in which we divide the problem
into many subdomains. For inverse problems, we also need
multifrequency solutions, and all these methods have not
addressed this need. Alkhalifah et al. [14] demonstrated the
multidimensional wavefield solutions potential of PINNs, but
the accuracy over the range of frequencies was not good.

III. SINGLE REFERENCE FREQUENCY LOSS

A. Helmholtz Equation for Scattered Wavefield

In this section, we briefly revisit several key concepts
of the frequency-domain scattered wavefield representation
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Fig. 1. Original 4-Hz wavefield based on a simple layered model (left), the wavefield after frequency upscaling (double the frequency), which is an 8-Hz
wavefield (middle), and the wavefield after spatial rescaling (SR, reducing the spatial scale for each coordinate by half), which looks like the 4-Hz wavefield
but only changes the scale (right). The Helmholtz equations based on wavefields of the middle and the right ones share the same frequency.

using PINN. In this letter, we focus on the forward modeling
problem for the case of absorbing boundary conditions, and
the velocity is known. To reduce the spatial samples needed
for training the 2-D frequency-domain acoustic wave equation
(Helmholtz equation) and mitigate the source singularity of the
frequency-domain wavefield, we use the scattered wavefield
instead, given by

ω2mδU + ∇2δU + ω2δmU0 = 0 (1)

where m is the squared slowness, ω is the angular frequency,
U is the frequency-domain wavefield as a function of (x, z)
due to the source term s = (sx , sz), ∇ is the gradient operator,
U0 is the background wavefield, δU = U − U0 [15] is
the scattered wavefield, and δm = m − m0 is the squared
slowness perturbation. Considering the background velocity
to be constant, U0 can be directly calculated using the con-
stant background squared slowness m0 with an analytical
relation [16]

U0(x, z) = i

4
H(2)

0 (ω
√

m0{(x − sx)2 + (z − sz)2}) (2)

where H(2)
0 is the zero-order Hankel function of the second

kind. With this background wavefield, we consider the implicit
setting that seismic waves propagate in infinite space. We,
also, consider sources located at the same depth as it is often
practiced in surface seismic exploration settings [17]. To find
an NN representation �(θ, x) satisfying the physical constraint
(PINN), where θ represents the NN parameters and the NN’s
input x = (x, z, sx , ω), we use the physical multifrequency
loss function, defined as

L = 1

N

N∑

i=1

∣∣ω2mi�(θ, xi ) + ∇2�(θ, xi ) + ω2δmiU i
0

∣∣2

2 (3)

where N is the number of training samples.

B. Relationship Between Frequency Upscaling and Spatial
Rescaling

From (1), we observe that, when we double the frequency,
the first and third terms will quadruple. To keep (1) stationary,
we need the second term (the Laplacian operator acting on

δU) to quadruple as well. To do so, we rescale the spatial
axes to maintain the effective wavenumber. Thus, when we
double the frequency, we rescale the spatial coordinates by
half. For simplicity, we use three frequency-domain wavefields
(see Fig. 1) to demonstrate the process. We immediately arrive
at the conclusion that the wavefield by the frequency upscaling
(8-Hz wavefield) and the wavefield by spatial rescaling (4-Hz
wavefield after spatial rescaling) share similar wavenumber
content satisfying the Helmholtz equation, which means that
we just need one frequency here to describe two wavefields
with different frequencies.

C. Dynamic Frequency Weighting Derivation

The relationship between frequency upscaling and spatial
rescaling can be used to maintain a stationary wavenumber of
the wavefield over the frequency range. However, the way to
achieve this by literally rescaling the input spatial coordinates
as a function of frequency will admit a nonuniform space
dimension range for the various frequencies, in which the
higher frequency component space dimension will be larger
than the low-frequency one (see Fig. 2). This dimension will
nonuniformly add complexity to the implementation of PINN.

To implement this stationary wavenumber concept, we intro-
duce a frequency weighting approach, which upweights the
derivation of low-frequency wavefields. The frequency weight-
ing is dynamically determined by the ratio of current frequency
of the training sample to the reference frequency, and as a
result, the gradient of the scattered wavefield is given by

gradient(δU) = ∂δU
∂(αx)

(4)

where α is the scaling factor, equal to the ratio of the current
frequency to a reference frequency. Inserting (4) into (1),
we have the new loss function

L = 1

N

N∑

i=1

∣∣∣∣ω
2
ref m

i�(θ, xi) + ∂2�(θ, xi)

∂2(αxi )
+ ω2

refδmiU i
0

∣∣∣∣
2

2

(5)

where ωref is the reference angular frequency and N is the
number of training samples. In practice, we implement (5) by
utilizing a computational graph (as shown in Algorithm 1).
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Algorithm 1: Training With the Single Reference Fre-
quency Loss Function

Draw N points {xi}N
i=1 sampled from the 4-D model

region, and no boundary points.
Initiate: NN parameters θ
for each epoch do

Compute the xre f = (x, z, sx) × ω

ωre f

Then the input of the NN: x = (xre f × ωre f

ω
,ω)

normalize x and feed them into the network to get
�(θ, x)

automatic differentiation:
∂2�(θ, x)

∂2xre f
calculate the loss function of equation 5
Update: NN parameters θ

Fig. 2. Schematic plot describing how the reference frequency is utilized to
make the wavefield nearly stationary over frequency (similar wavenumbers).
Thus, the velocity model is stretched in the transformed space domain so that
the wavefield will be accurate in the none transformed domain. As frequency
increases, α increases.

Fig. 2 demonstrates the scaling of the velocity model along
the x-axis. A similar scaling is applied to the z-axis. Thus, α
provides the proper velocity v(αx, αz) transformation, and we
can use (5) directly with setting ωref for all frequencies. This is
easy to implement using NN functions as the training sample
points are often chosen randomly. Thus, we only need to train
using random values from within the inverted trapezoid region
in Fig. 2. Thus, depending on the frequency (or α), the range of
samples involved in the training varies. Note that, for a uniform
distribution of samples, low frequencies will get far fewer
samples in the training than high frequencies, which is natural
for a proper representation of the complexity of the wavefield.

IV. EXPERIMENTS

In this section, to show the effectiveness of our proposed
loss function for the scattered wave equation, we test the per-
formance of conventional PINN using the multifrequency loss
function and PINN utilizing our single reference frequency
loss function on a simple layered model. Then, we compare
the accuracy of the predicted wavefields by computing the
corresponding velocities obtained via inserting the predicted
wavefields into (1).

Based on a simple layered model (see Fig. 3) extracted from
the Marmousi model covering an area of 2.5 × 2.5 km2,
we generate 1 280 000 random samples for our 4-D wave-
field space, with the frequency, ranging from 3.0 to 8.0 Hz,
along with δm for squared slowness perturbation and m0 for
background squared slowness at these points. The depth of

Fig. 3. Simple layered velocity model extracted from the Marmousi model.

sources sz is set to 0.025 km. The background wavefield is
calculated analytically for a background velocity of 1.5 km/s.
The reference frequency here is 8.0 Hz. The basic network
architecture for both methods is a multilayer perception with
three hidden layers, as well as positional encoding [7]. The
inputs include {x, z, sx , ω}, and the hidden layers are of the
size {512, 512, 512} from shallow to deep.

We use an Adam optimizer to train our networks. During
training, we set the batch size to 40 000. The initial learning
rate is chosen to be 1e−3, and it is gradually decreased to
5e−5. We have trained (optimized) our model with these
settings for 15 000 epochs. The training costs of our proposed
method and vanilla PINN are almost the same. To evaluate
the results, we numerically solve the Helmholtz equation
for specific frequencies and source locations, and use the
solution as a reference; these solutions are provided in the
2.5 × 2.5 km2 area using 100 samples in both the x- and
z-directions. For Figs. 4 and 5, the source is located at a depth
of 0.025 km and the lateral position of 1.0 km. Figs. 4 and 5
show the real and imaginary parts of the predicted wavefield
for various frequencies. It is obvious that, with one more
input dimension, the representation of NNs for the wavefield
becomes harder to obtain via conventional training. On the
other hand, our proposed loss function provided reasonable
results considering the larger (four) dimensional space, and
we obtain a much more accurate amplitude and phase rep-
resentation of the wavefield. We also calculated the velocity
models from the PINN predictions using (1) [18], as shown in
Fig. 6. We can observe that the PINN with our proposed loss
function reconstructs the details of the velocity model much
better than the vanilla method.

Transforming the multifrequency wavefield into
time-domain records could help us understand better what
parts of the wavefield we managed to predict accurately in
time. Using inverse Fourier transform, we obtain time-domain
snapshots for the numerical implementation, the conventional
PINN, and our proposed PINN of the multifrequency
wavefield representation. Fig. 7 shows the time-domain
snapshot at 1.0 s transformed from 3- to 8-Hz wavefields
with a frequency interval of 0.2 Hz. We observe that the
time-snap shot obtained by the model trained with a single
reference frequency loss function shows more agreement with
the numerical result compared to the vanilla multifrequency
loss function, specifically the key reflection corresponding to
the high-velocity perturbation at 2.0 km.

V. DISCUSSION

From the above experiments and analysis, we found that,
though PINN provides a general framework to represent
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Fig. 4. Real parts of predicted multifrequency wavefields using numerical solutions (on the top, considered ground truth), vanilla PINN (in the middle), and
the PINN with our method (on the bottom).

Fig. 5. Imaginary parts of predicted multifrequency wavefields using numerical solutions (on the top, considered ground truth), vanilla PINN (in the middle),
and the PINN with our method (on the bottom).

Fig. 6. Estimated velocities from the multifrequency wavefields.

functional solutions of PDE, these solutions tend to be smooth
and prone to errors. This weakness often limits the potential of
PINN for practical applications. Combining our understanding
of the physical property underlying the PDEs, the proper
architecture design, and the proper training of PINN, the
accuracy of the solution could be improved at a reason-
able cost. Here, we demonstrate how our single reference
frequency loss function, taking into account the behavior
of the wavefield with respect to frequency, can reduce the
complexity of our solution space, which is important for

high-dimensional wavefield representation by PINN. The ben-
efits are achieved by leveraging an adaptive spatial scale that
depends on the frequency and, thus, mitigates the change in
the spatial wavenumber over frequency. As for the formulation
of the loss function, it results in a natural weighting of the
loss.

As for the selection of the reference frequency, in theory,
it can be chosen as any value, and it is better to be in the
frequency range. In our implementation, we found that using
the upper bound of the frequency range is better.

Authorized licensed use limited to: KAUST. Downloaded on June 04,2022 at 03:06:54 UTC from IEEE Xplore.  Restrictions apply. 



HUANG AND ALKHALIFAH: SINGLE REFERENCE FREQUENCY LOSS FOR MULTIFREQUENCY WAVEFIELD REPRESENTATION 3007105

Fig. 7. Comparison of the time-domain wavefields at 1.0 s transformed
from the wavefields ranging from 3 to 12 Hz with an interval of 0.2 Hz by
numerical method (as a reference), vanilla PINN, and our proposed method.

As for the computational efficiency, although the total
training time of the workflow may cost 5 h total (trained
using a Quadro RTX 8000 GPU with 48 GB of memory),
it can predict the wavefield value within the frequency range
at an arbitrary space point (x, z) for any source location on
the surface instantly, such as an extended Green’s function.
For the prediction of a monofrequency wavefield with 91 809
samples (101 × 101 resolution and nine sources), it only takes
3 s. In future work, we plan to study the positional encoding
methods and the design of the PINN to make the training
faster.

VI. CONCLUSION

We proposed using a reference frequency-based loss func-
tion to train the NN for multifrequency wavefield repre-
sentation, and we demonstrated that this approach admitted
superior performance and wavefield accuracy compared to the
vanilla PINN. The reference frequency loss function implicitly
embeds the relationship between frequency upscaling and
spatial rescaling into the network, which makes the network
easier to train and improves its representation. The method has
the potential to solve the multifrequency Helmholtz equation
even in a large and complex model. The method can be
generalized to other physical problems, which may include
a multifrequency or multiscale component.
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